Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Gerontol ; 189: 112403, 2024 May.
Article in English | MEDLINE | ID: mdl-38490285

ABSTRACT

Walking performance and cognitive function demonstrate strong associations in older adults, with both declining with advancing age. Walking requires the use of cognitive resources, particularly in complex environments like stepping over obstacles. A commonly implemented approach for measuring the cognitive control of walking is a dual-task walking assessment, in which walking is combined with a second task. However, dual-task assessments have shortcomings, including issues with scaling the task difficulty and controlling for task prioritization. Here we present a new assessment designed to be less susceptible to these shortcomings while still challenging cognitive control of walking: the Obstructed Vision Obstacle (OBVIO) task. During the task, participants hold a lightweight tray at waist level obstructing their view of upcoming foam blocks, which are intermittently spaced along a 10 m walkway. This forces the participants to use cognitive resources (e.g., attention and working memory) to remember the exact placement of upcoming obstacles to facilitate successful crossing. The results demonstrate that adding the obstructed vision board significantly slowed walking speed by an average of 0.26 m/s and increased the number of obstacle strikes by 8-fold in healthy older adults (n = 74). Additionally, OBVIO walking performance (a score based on both speed and number of obstacle strikes) significantly correlated with computer-based assessments of visuospatial working memory, attention, and verbal working memory. These results provide initial support that the OBVIO task is a feasible walking test that demands cognitive resources. This study lays the groundwork for using the OBVIO task in future assessment and intervention studies.


Subject(s)
Gait , Walking , Humans , Aged , Cognition , Walking Speed , Attention , Task Performance and Analysis
2.
Eur Rev Aging Phys Act ; 19(1): 21, 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36115944

ABSTRACT

INTRODUCTION: With the increase in participation by older adults in endurance events, research is needed to evaluate how exercising throughout the lifespan can affect the aging process regarding gait and mobility. The purpose of this study was to determine how the type of exercise modality one participates in will affect age-related declines observed during running. METHODS: Fifty-six individuals between the ages of 18-65 who considered running, resistance training or cycling/swimming as their primary form of activity participated in this study. Kinematics were captured using a 10-camera motion capture system while participants ran at a controlled pace of 3.5 m/s (± 5%) over a 10-m runway with force platforms collecting kinetic data. Eight successful trials were chosen for analysis. A one-way ANOVA assessed differences in mean kinematic and kinetic variables of interest between physical activity groups (α = 0.05). RESULTS: Older resistance trainers exhibited greater maximal knee power compared to older runners. No other group differences were observed. CONCLUSION: Despite type of exercise modality, regularly participating in exercise has positive effects. This is evident through the preservation of the function of the lower extremity with age, specifically function of the ankle, and its contribution to healthy movement patterns.

3.
Gait Posture ; 97: 86-93, 2022 09.
Article in English | MEDLINE | ID: mdl-35914388

ABSTRACT

BACKGROUND: The presence of fatigue has been shown to modify running biomechanics. Throughout a run individuals become more fatigued, and the effectiveness of the musculoskeletal protective mechanism can diminish. Older adults are at an elevated risk for sustaining an overuse running related injury. This can be partially explained by changes in the musculoskeletal system and load attenuation. RESEARCH QUESTION: The purpose was to compare post-fatigue running mechanics between older and younger runners. METHODS: Thirty runners (15 young, 15 older) between the ages of 18-65 participated in this study. All participants ran at least 15 miles/week. Running kinematics were captured using a 10-camera motion capture system while participants ran over a 10-m runway with force platforms collecting kinetic data under two conditions: C1: rested state at a controlled pace of 3.5 m/s ( ± 5%); C2: post-exertional protocol where pace was not controlled, rather it was monitored based on heartrate and RPE representative of somewhat-hard to hard intensity exercise. Prior to C2, participants underwent an exertional protocol that consisted of a maximal exercise test to induce fatigue and a required cool-down. A 2 (state of fatigue) x 2 (age) MANOVA was run to test for the effects of fatigue and age and their interactions. RESULTS: No state of fatigue x age interaction was observed. A main effect of age for peak knee extension moment (Y > O; p = 0.01), maximum knee power (Y > O; p = 0.04), maximum hip power (O >Y; p = 0.04), and peak vertical ground reaction force (Y > O; p = 0.007). Regardless of age, participants exhibited decreased knee ROM (p = 0.007) and greater hip extension moment (p < 0.001) in C2 compared to C1. CONCLUSION: While different in knee and hip mechanics overall, the subtle differences observed demonstrate that older runners exhibit comparable gait adaptions post-fatigue to younger volume-matched runners.


Subject(s)
Running , Adolescent , Adult , Aged , Biomechanical Phenomena , Fatigue , Humans , Knee Joint , Lower Extremity , Middle Aged , Running/injuries , Young Adult
4.
J Sports Sci ; 38(8): 855-862, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32167013

ABSTRACT

Ultra-cushioning (ULTRA) shoes are new to the running shoe market. Several studies have evaluated kinematics and kinetics while running in ULTRA shoes, however it remains unknown how such shoes influence joint coordination. Therefore, the purpose of this study was to evaluate lower extremity coordination and coordination variability when running in minimalist (MIN), traditional (NEUT) and ULTRA shoes. Fifteen runners ran for ten minutes in each shoe type. Coordination patterns and coordination variability were assessed for rearfoot-tibia, rearfoot-knee, and tibia-knee couplings using a modified vector coding method during early, mid, and late stance periods. During late stance ULTRA shoes resulted in more antiphase coordination than MIN (p =.036) or NEUT (p =.047) shoes and less in-phase coordination than MIN (p =.048) or NEUT (p =.013) shoes. During late stance there was also more proximal phase rearfoot-knee coordination in ULTRA shoes than in either MIN (p =.039) or NEUT (p =.005) shoes and less in-phase coordination in ULTRA shoes than in NEUT shoes (p =.006). There were no differences in coordination variability between shoes during any phase. The differences in coordination may have implications for tissue loading and injury development when running in ULTRA shoes..


Subject(s)
Equipment Design , Foot/physiology , Knee Joint/physiology , Running/physiology , Shoes , Tibia/physiology , Adult , Biomechanical Phenomena , Female , Humans , Joints/physiology , Male , Young Adult
5.
J Electromyogr Kinesiol ; 50: 102379, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31821920

ABSTRACT

While several studies have examined kinematic and kinetic differences between maximalist (MAX), traditional (TRAD), or partial minimalist (PMIN) shoes, to date it is unknown how MAX shoes influence muscle activity. This study compared lower extremity kinematics and muscle activity when running in PMIN, TRAD, and MAX shoes. Thirteen participants ran in each shoe while whole body kinematics were recorded using motion capture and electromyography was recorded from seven leg muscles. Differences in kinematics and root mean square amplitudes (RMS) were compared between shoe conditions. There were small differences in sagittal and frontal plane ankle kinematics between shoe conditions, with the MAX shoes resulting in less dorsiflexion at foot strike (p = .002) and less peak dorsiflexion (p < .001), and the PMIN shoes resulting in greater peak eversion (p = .012). Gluteus medius (p.006) and peroneus longus (p = .007) RMS amplitudes were greater in the MAX shoe then the TRAD or PMIN shoes while tibialis anterior RMS amplitudes were higher in the PMIN shoes (p = .005) than either the TRAD or MAX shoes. Consistent with previous findings, these results suggest there are small differences in kinematics when running in these three shoe types. This may partly be explained by the changes in muscle activity, which may be a response in order to maintain a preferred or habitual movement path. Implications for these difference in muscle activity in terms of fatigue or injury remain to be determined.


Subject(s)
Running/physiology , Shoes/adverse effects , Adult , Ankle/physiology , Biomechanical Phenomena , Female , Foot/physiology , Humans , Male , Muscle, Skeletal/physiology , Shoes/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...